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ARTIFICIAL VISCOSITY Q ERRORS FOR STRONG SHOCKS
AND MORE-ACCURATE SHOCK~FOLLOWING METHODS*

William F. Noh
Lawrence Livermore National Laboratory

University of California, Livermore, CA 94550

Abstract

. . . . . 1.
The artificial viscosity (Q) method of von Neumann-Richtmyer 1is a

tremendously useful numerical technique for following shocks wherever and
whenever they appear in the flow. We show that it must be used with some
caution, however, as serious Q-induced errors (=100%) can occur in some
strong shock calculations.

We investigate three types of Q errors:

1. Excess Q heating, of which there are two types: (a) excess Wall
Heating on shock formation and (b) Shockless Q Heating;

2. Q errors when shocks are propagated over a non-—uniform mesh; and

3. Q errors in propagating shocks ip spherical geometry.

As a basis of comparison, we use as our standard the Lagrangian

2 2 2

pl (u )",

0 X 9

This standard Q is compared with Noh's (Q&H) shock-following method,

formulation given in Ref. 1 with Q = C

which employs an artificial heat-flux term (H) in addition to Q, and with the
(non-Q) PPM method of Colella and WOodward.3 Both the (Q&H) and PPM methods
(particularly when used with an adaptive shock-tracking mesh) give superior
results for our test problems.

In spherical geometry, Schulz's tensor Q formulation4 of the

hydrodynamic equations proves to be most accurate.

*Work performed under the auspices of the U.S. Department of Energy by the

Lawrence Livermore National Laboratory under contract No. W-7405-ENG-48.



1. INTRODUCTION

The artificial viscosity (Q) method of von Neumann—Richtmyer1 has been
(and is) a tremendously useful numerical technique for following shocks
wherever and whenever they appear in the flow. As we shall see, it must be
used with some caution, as serious Q-induced errors can occur in some strong
shock calculations.

We investigate three types of Q errors:

. Excess Q heating, of which there are two types: (i) excess Wall

Heating on shock formation and (ii) Shockless Q Heating;

. Q errors when shocks are propagated over a non-uniform mesh; and

. Q errors in propagating shocks in spherical geometry.
We use as a basis of comparison, the Lagrangian formulation given in Ref.

. 2 2 2 . .
1 with Q = Copl (ux) , and refer to this as our standard calculation. In

Sect. 2, the Lagrangian differential equations with Q [in plane (§ = 1),

cylindrical, (8§ = 2), and spherical (8§ = 3) geometry|] are given, and we

include an artifical heat flux term H = hgpl?luxlex used in Noh's (Q&H) shock-
. 2

following method. For our comparisons, three 's are defined: QL’ QL(v),

and Qg (where Q. is our standard Q, above, and ¢ (v) is the original

definition given in Ref. 1 (see also Richtmyer—Mlthon,S p.319) and depends on
the geometry § = 1, 2, or 3). Also two Hs, H; and H, are defined. Here, L
refers to the normal Lagrange usage, in which the length g is taken to be
equal to the Lagrange mesh interval Ax in the difference formulations, and

shocks are spread over a fixed number of mesh intervals (=3) regardless of
their actual size. E refers to the Eulerian (or "fixed length") definitions in
which ¢ is a constant (:Axmax), and shocks are spread over a fixed physical

distance (=3px__ ). Then, in the (Q&H) method, Q, and H; are used together,

max
as are QF and H

E° Standard (staggered mesh) differencin; is used (see Ref.
7), and the nominal benchmark Lagrangian Q = ZD(AU)?-

In Sect. 3, the Wall Heating Q error is investigated in test problem #1
(Fig. 8). This is an infinite~strength, constant-velocity shock that is
generated when a zero-temperature (y = 5/3) gas is brought to rest at a rigid

wall (x = 0). The excess Wall Heating error occurs in the first few zones near
the wall (Fig. 1). Now, in nature, heat conduction prevents excess Wall Heating
from developing, and thus the (Q&H) method (which includes an artificial heat

flux term, H) also prevents the excess Wall Heating error. This is shown in

Fig. 2.



The Shockless Q Heating error is investigated using a test problem called
"Uniform Collapse."6 Here the fluid is shockless, although it is everywhere
compressing, and, consequently, an energy error Ae¢ is introduced for QL'

Qg and QL(V). In particular, the Q. (v) error is much larger (for § = 3) than

L

for QL (i.e., it is shown that AEL(V) = GZAE and this fact strongly favors

L)’
our use of QL as the standard Lagrange formulation.
In Sect. 4, the second type of Q error is investigated by introducing a

non-uniform mesh (Axk = RAx, for constant R) into problem #1 (see Fig. 3).

With QL = 2p(Au)2 as our st:ndard Q, the Q errors for R = 1.05 and R = 1.25
(Figs. 4 and 5) are compared. The errors are seen to approach 100%Z for R =
1.25, and thus can be a serious concern. A calculation using QE (the
fixed-length Q), taken together with He (in the (QE&HE) method), eliminates
both type #1 and #2 errors (Fig. 6). Unfortunately, using Qg spreads shocks
over a fixed physical distance (=3Axmax)’ which is unacceptable in those
regions where a smaller mesh interval occurs. A theoretical explanation for
the non-uniform mesh error shows that letting ¢ = Ax in the difference
formulation implies ¢ = 2(x) in the differential equation formulation of Q>
and it is this use of ¢ that generates this non-uniform mesh error. (For more
information see Ref. 7.) The (QL&HL) method permits the use of a considerably
smaller QL coefficient, CO’ and thus produces sharper shocks. This, in turn,
produces smaller Q errors, as seen in Fig. 7. The (QL&HL) method thus offers
an acceptable procedure if the unequal zoning is not too severe.

In Sect. 5, the spherical geometry Q errors are investigated using Noh's
spherical-shock test problem2 (Fig. 8d). This type #3 error is considerably
more complicated than the previous Q errors, in that it depends both on the Q
formulation [e.g., QL vs QL(v)] and whether or not Q is treated as a scalar
viscosity (as in Ref. 1) or as a tensor viscosity, as in Ref. 4. The errors
are seen to be truly enormous (Fig. 9), where the error for the standard QL
formulation is nearly 600% (near the origin) and is nearly 1000% for the
original QL(V) definition of Q given in Ref. 1. 1In Fig. 10, we see how
serious this error can be as a function of mesh size and just how slow the
solution converges to the exact value, p+ = 64. Indeed, even for K = 800,
there is still a considerable error near the origin. The explanation is given
in Fig. 11, where it is shown that the error results from the finite shock
thickness, and thus the inability of the Q method to select the correct

preshock density., That is, the shock spreading picks R Pexact = l6. We

conclude that sharper shocks give smaller Q errors, and indeed this is shown

in Fig. 12, when the (non-Q) PPM method of Woodward and Colella3 produces very



sharp shocks and has minimal error. This error in PPM is further reduced by
using an adaptive mesh technique to capture the shocks, and the results using
400 zones (with an adaptive mesh) is equivalent to a normal 1200-zone
(essentially converged) PPM problem.

In Sect. 6, Schulz's tensor Q formulation (T) of the hydrodynamic
equations is given, along with his tensor QL(S) definition.4 Calculations
using this tensor formulation (Fig. 13) are a significant improvement over the
standard scalar (S) solutions (e.g., Fig. 9). However, there is only a slight
improvement using Schulz's QL(S) over the standard QL' Consequently, we
conclude that the tensor equations (T) are more umportant than which Q.
formulation is used. Again, as sharper shocks reduce the type #3 error,
nearly exact results are obtained using a very small (Cg = 1/4) in the
(QL&HL) (T) method, where Q = (1/4)p(Au)2 and H
Fig. 15, the various Qs, (Q&H), and the (non-Q) PPM method are compared. The

= 10p1aulpe (Fig. 14). Im

best results are obtained from the tensor formulation using the (QL&HL) (T)

method and PPM with an adaptive mesh.

2. LAGRANGTAN FLUID EQUATIONS WITH ARTIFICIAL VISCOSITY (Q) AND HEAT FLUX (H)

Von Neumann and Richtmyer1 introduced their artificial viscosity Q as a
scalar quantity, and we take their formulation of the Lagrangian fluid
equations as our standard. Also, the new (Q&H) shock-following method of
Noh2 (which uses an artificial heat flux H in addition to the artificial

viscosity Q to follow shocks) is included in the formulation.

2.1 Differential Equations

The independent Lagrange variables are r and t, where r is the initial
position of the Eulerian (physical) coordinate ‘i.e., R(r,0) = r), and u, ,,

€, and P are the velocity, density, internal energy, and pressure. The

differential equations for plame (§ = 1), cylindrical (§ = 2), and spherical

(6 = 3) geometries are then (letting dm = aporﬁ_ldr = QOdIG)Z

= _.pé-1

u, §R (P+Q)m momentum
R =u

L

v = 1/ = (Rd)m mass (2.1)
o 5-1
€ = —(P+Q)vt + §(R H)m energy
P = Plp,e) equation of state



2.2 Definitions of Q and H

} These are used in some of the Q

In Q and H, we include linear terms.
error comparisons to produce smoother shock profiles, but otherwise don't
affect the Q errors. Also, the Qs and Hs are set to zero if the indicated

tests fail to hold.

2 2 2
Standard Lagrange Q: QL(C C ) = Cypot (ur) - CipCgou_ (2.2)
1if u < 0;
r
2 2

_ _ 2.3
Standard Lagrange H: HL(hO,h ) hopt “ru te  + hpCote ( )
if Q # 0;
Eulerian fixed-length Q: Q.(C = Czpzz(u )2— C,pC_ou (2.4)

: E ‘1) 0 R 1"'s" R’

if ug < 0;

{an fi o1’ (2.5)
Eulerian fixed-length H: HE(hO,h ) = hopl luplept hlpCSLeR , .
if Qp # 0;

.. A
Original Lagrange formulation : Q (v) = (C 0 ?) (g )28~ 2(Vt)z, (2.6)

if v, < 0;

where CO’ Cl’ hO’ and h1 are constants, ¢ is a constant with the dimensions of
length, and Cg is the local sound speed. The usage is (QL&HL) and (QE&HE).
Equation (2.6) is the original Q formulation (see also Ref. 5, p. 319) in
terms of v = (1/p), and we note it is the only Q here to depend on the
geometry (§). 1In the Lagrange formulation (L), the standard use is to take

2 = Ar in the difference equations. This spreads shocks over a fixed number
(=3) of mesh intervals (regardless of their size), while in the Eulerian
formulation (E), ¢ is constant (:Axmax), and shocks are spread over a fixed
physical length (=3¢). Standard "staggered mesh' difference equations are used

(see Ref. 7 for details), and the nominal Q;, benchmark difference formulation
is QL = ZQ(AU)Z

3. EXCESS Q HEATING

There are two excess Q heating errors: (1) excess wall (or piston) heating
due to Q, which occurs on shock formation (e.g., at a rigid wall where a gas is
brought to rest, and a shock is propagated away, or for the sudden startup of a

piston); and (2) Q heating for shockless compressions (e.g., when u_ < 0,

but no shock is present).



3.1 The Wall Heating Error Test Problem

Test problem #1 is that of a constant-state, constant-velocity shock of
infinite strength (i.e., the pre-shock pressure P = P0 = 0). The shock is
generated in a perfect (y = 5/3) gas by bringing the cold (go = 0) gas to rest
at a rigid wall at x = 0. This is just the familiar constant-velocity
(piston) shock, but in a frame of reference where the piston (here a rigid
wall) is at rest (Fig. 8a,b). 1In Fig. 1, p+ 1s plotted for our "standard
calculation'" using QL = 2p(Au)2. The shaded area (the Wall Heating error)
occurs typically in the first three zones next to the wall {(or piston). That
this error is unavoidable for any shock smearing method, is argued in Ref. 7.

In real fluids, heat conduction is present, and Wall Heating does not
occur, and this is the basis of Noh's (Q&H) method, Eqs. (2.1) and (2.3). 1In
Fig. 2, QL(O.67, 0.2) is used, plus the heat flux term 4L(0,3/4) = 3/4pC_ae .
As expected, the Wall Heating error is zero. We also note that the (QL&HL)
solution is considerably smoother, and this permits the use of much smaller Q
counstants C_. and C1 (with generally smaller 0 errors).

0

3.2 Shockless Q Heating Errors

This is the situation where a compression wave exists (i.e., ur<0), and
thus Q # 0; yet the exact solution is shockless. For this analysis, we
consider the useful "Uniform Collapse Problem' ‘see Noh,6 p. 60), in which a
flow is everywhere undergoing a compression, but no shock develops. We
consider a unit "sphere" (0 <r 5_1), (for § = L, 2, or 3), and to simplify

the analysis of the energy errors due to Q, we assume pressure to be a

function of density only, P = P(p).

The initial values are u(r,0) = -r, 5 = po, e = g”, and pC = P(po),
with boundary couditions u(0,t) = 0 and u(l,t) = -1. The exact solution is
that the fluid simply coasts with its initial velocity (i.e., u = ~r) until
all points uniformly collapse onto the origin F = 0, at time t = 1. It 1s
easy to verify that the exact solution is giver by
u(r,t) = -r , R = r(1-t), and v = (1/p) = (1-0)5(1/0™ . (3.1)
. _ _ _ . 0 §-1
Thus, o = p(t), P = P(p} = P(t), and since €, © “Pv, = s/e p(r) (1-t) s

then ¢ = »(t).
it follows that Q = Q(t), and thus the solution given by Eq. (3.1)
continues to hold, except for the emergy equation. TI1f we let the error in

energy be pe = I(et + Pvr) dt = - rQu _dt, then from Eq. (3.1)
and v = (,l‘t),

™



= - = - 2 .2)
Aeyp = ~fQuv . dt 5(009,) tn(t) , (3.2
1 2 =2
= - = = 3.3)
Ae g IQevtdt 26(C01) T , and (

(v) = - (v)v dt = -~ 3(C )2 () (3.4)
e (v IQL viv, 8 o) i) . .
We note that

(v) = 62A d pe, < Ae (3.5)
AeL v) = €1, > an €L E * .

Now, as T + 0, the error Ae + «, and this Shockless Q Heating error can

indeed be serious. From Eq. (3.5) and (§ = 3), we see that the error AEI(V)

is nearly an order of magnitude greater than the error Ae It is due to

Lt
. 6

arguments similar to these that Noh in 1956 suggested that the QL of Eq. (2.2)

be taken as the standard Q formulation for all geometries § =1, 2 or 3. We

make the suggestion again (and for more reinforcement, see Figs. 9 and 10),

since QL(V) still seems to be in common use.
4, Q ERRORS FOR A NON-UNIFORM MESH

The second type of Q error occurs when shocks are propagated over a mesh

with unequal intervals. 1In problem #1, let

6%, ., = Rax, -, (4.1)

where R is a constant: 1 < R < 2. We investigate the cases R = 1.05 and R

= 1.25. 1In order to show the errors for both decreasing (R < 1) and
increasing (R > 1) mesh intervals, we let the mesh decrease for the first half
of the problem, then increase for the second half (Fig. 4). 1In Fig. 5, R =
1.05, and the density is plotted for our standard QL = ZD(AU)Z. The total
error is shaded, and again we see the familiar Wall Heating error in the first
several zones. The new error, Ap; =+o; - p;xact = o; - 4, is > 0 for the
first half (decreasing mesh), and Apy < 0 for the second half. This new

(type #2) non-uniform mesh error grows with R and becomes very serious (=100%)
for R = 1.25. This is unfortunate, since it is not uncommon to use R = 2 in
practice, and thus R = 1.25 might well be considered a modest zoning change.

The good news is shown in Fig. 6, where R = 1.05, and the Eulerian "fixed

length" QE is seen to eliminate the non-uniform mesh error. When QE is used



in conjunction with H_ in the (QE&HE) method, then both the type #1 (Wall

E
Heating) error and the type #2 (non-uniform mesh) error are completely
eliminated. The bad news is that very large QE constants are necessary [where
(COQ)2 = (COAxmax)2 = 6 (for CO = 1) and Clemax = 0.8 (for C0 = 0.33)], and
this 1s seen to spread the shock over a large number of the smaller zomes. 1In
this regard, the use of Qe is not satisfactory.

A more practical solution is to use the (QL&HL) method. This eliminates
the Wall Heating error, and (as mentioned earlier) the use of the heat flux term H
permits the use of a much smaller QL constant CO tand 013, which, in turn,
reduces the type #2 (non-uniform) mesh error. 1In Fig. 7, R = 1.05 and Q =

o(Au)2 (i.e., C20= 1) is compared with the (Qp&H;) method, with a

corresponding reduction in the non-uniform zoning errcr to around 3%.

4.1 Theoretical Discussion

In the standard Lagrange difference formulation of QL’ the length 2 in
Eq. (2.2) is taken to be ¢ = px, and thus (zux) + {pu). Now, when an unequal
mesh interval is used, Ax 1s no longer a constant, and this implies that ¢ =
2(x) in the differential formulation of Q] in FEq (2.7, 1In fact, where Ax,

is given by Eq. (4.1), 2(x) is found to be
2(x) = 2[(R-1)x + Axo]/(R+1) . (4.2)

See Ref. 7 for details and further explanation of the non-uniform mesh error.
One consequence of using Eq. (4.2) in Eq. { .2) in the differential

equations, Eq. (2.1), is that steady traveling shocks are no longer

solutions. This is clear since the shock width "instead of being a constant)

will now be proportiomal to 2{(x). This would st 11 be an acceptable numerical

approximation for shocks if only the proper shock jump conditions held, but our

numerical experiments show that this is unfortunately not the case.

5. Q ERRORS IN SPHERICAL (& = 3) GEOMETRY

The third type of Q error is related to strong shock propagation in
spherical {or cylindrical) geometries. This error is considerably more serious
{up to 1000% error in (excess) shock heating near the origin), and is also more
complicated than the previous 9 errors. This third type of Q error depends on

the Q formulation [i.e., QL of Eq. (2.2) ys. Qlfv) of Eq. (2.6)] and also



seems to depend on whether Q is treated as a scalar or a tensor viscosity in
the formulation of the hydrodynamic equations. In particular, a tensor
formulation (Sect. 6) due to Schulz4 gives sharper shocks than our standard
use of QL in Eq. (2.1), and this is instrumental in reducing this third type
of Q error.

Test problem #3 is just the spherical (§ = 3) generalization of test
+

problem #1 where the post (infinite) shock solutions (u+, 0 €+, and P) are,
again, constant step-value functions (Fig. 8d).

Our standard test problem has 100 mesh intervals (aAr = 0.0l), and the
results are compared at time t = 0.6. Since the shock speed is S = 1/3, then
80% of the mesh (i.e., 80 mesh points) have been traversed by the shock, and
one would expect accurate results. Unfortunately, this is not the case, as is
seen in Fig. 9, where the standard QL(2) = Zo(Au)2 is compared with the

Av,2 2upR .2
R

original QL(V) = Z(Ar)zo(g)4 (Z?) = 2plAu + ]°. Here, both are compared

. . + . -
with the exact solution, p = 64. The numerical results are strikingly poor

and, in fact, hardly bear any resemblance to the exact solution. The error

for the standard QL = 29(Au)2 is on the order »f 600% near the origin and 20%
behind the shock, while the error for the original von Neumann- Richtmyer Q
[here QL(V) of Eq. (2.6)] is roughly 1000% in the central region and nearly

40% behind the shock. Clearly this third type of Q error depends on the Q
formulation. The solution using QL(V) 15 seen to be definitely inferior to

the solution using Q- There are several reasons for this. One is related to
the Shockless Q Heating Error of Sect. 3. Here, the first zone of test problem
#3 is just a special case of the Uniform Collapse test problem, and we found in
Thus, for

Eq. (3.5) that the Q; energy errors went as pe, < AeL(v) = 6265

§ = 3, the error using QL(v) is 9 times as 1ar;e as using QL. %here is an even
mahead of ore disquieting error in using QL(V), in that it preheats the gas

the shock. This occurs because, in the preshocked region (Fig. 9d),

v=1/p =(1+ %)—2, and thus v < 0, and QL(v) # 0. This preheating is, of
course, not physical (and is another instance of a shockless Q Heating error -
note that Q. does vanish as it should), and this error combines with the large
Shockless Q Heating error near the origin to produce the poor results of curve
(2) in Fig. 9. 1It's amazing that the shock solution is as good as it is. Just
how slowly the QL(V) solution converges is shown in the comparisons of Fig.

10, where the results are plotted for various mesh intervals: K = 50

(Ar = 0.02); K = 100 (ar = 0.01), up to K = 800, where Ar = 0.00125. FEven at

K = 800, the numerical solution still has an unacceptable error. These

results show that QL(V) of Eq. (2.6) is a poor formulation and is essentially



the reason that our definition of Q. given by Eq. (2.2) is taken to be the
standard Q (for § = 1, 2, and 3). We stress this point since QL(V) still
seems to be in common use.

Now, of course, these are still serious errors in the use of the standard
QL = 20(Au)2. This difficulty is analyzed in Fig. 11. The problem is
associated with the shock smearing due to 7). Because of the finite shock
thickness, the calculation "senses" an incorrect (too small) jump-off value of

the preshocked density (pﬁ)- That 1s, the shock smearing selects a
p~ < pexact = 16. This error is a maximum at early times and becomes less
serious as time advances as the (similarity) solution spreads out the
preshocked region over more and more mesh points. Thus, a given shock
thickness produces less and less error as time increases. The key, then, to
more accuracy is to sharpen shocks as much as possible.

The non-Q PPM method of Woodward and Colella3 produces very sharp shocks
(on the order of one-to-two mesh widths), and their results are considerably
more accurate than the use of the standard Q- This is shown in Fig. 12.
Also, the PPM results on the standard K = 100 problem are compared with their
very accurate "adaptive mesh shock—-following procedure" using K = 400.
The K = 400 results are also shown to be nearly as accurate (converged) as the
standard PPM with K = 1200. The effect of using an adaptive mesh is to
minimize the actual (i.e., physical) shock thickness, and, as we've argued 1n
Fig. 11, is all-important in determining the correct preshocked value p— = 16.
Clearly, using an adaptive mesh for resolving shocks is an important procedure,

and such a method would be equally effective for any Q lor (Q&H)] shock-

following procedure.
6. SCALAR VS TENSOR Q FORMULATIONS

In 1964, Schulz4 proposed that Q be treated as a temsor viscosity and
gave the following (T) formulation of the hydrodynamic equations (for § = 1,
2, and 3). We include the von Neumann-Richtmyer scalar (S) formulation,

Eq. (2.1), again for comparison. Also, the use of the artificial heat flux

(H) remains the same:

10



pu, + Pp = ~Q

u 1 6-1 Scalar (S) (6.1)
p(et + Pvt) = —Q[uR + (S—I)R] - -1 [R™ "H].
= - -2
pu, + Po lq, + (s I)R]
( y = 1 [Rs—l ] Tensor (T) (6.2)
ple, + Pvt = —QuR - ;E:T H R
Schulz also defined a new Q, which we denote by
_ 2 2 3/2 1/2
QL(S) Cop£ lu_ ! tu | , (6.3)
if u_ < 0, and 0 otherwise, and as usual, ¢ = Ar in the difference formulation.

Now, Schulz's QL(S) doesn't produce the Shockless Q Heating error of Sect.
3 (since u = 0, and thus QL(S) = 0 for the Uniform Collapse Problem), and we
thus might expect superior results for our spherical test problem #3. Indeed,
the results (Fig. 13) using the tensor formulatiom, Eq. (6.2), with QL(S) and
Q, are significantly better than using the scalar (S) equations, Eq. (6.1),
but there is essentially no improvement using QL(S) over QL' We conclude,
then, that the major improvement occurs because shocks are narrower (for any
Q) in the temsor (T) formulation. The reasons why shocks are sharper is not
entirely clear, but it follows, in part, from the formulation Eq. (6.2), where
where we note that there is less Qdv shock heating than for the scalar
equations, Eq. (6.1). That is, Qdv » Qup independently of geometry (§ =1, 2,
or 3) in Eq. (6.2). The (QL&HL)(T) method [i.e., Eq. (6.2)] with a small Q
constant C0 = 1/4 is particularly accurate. This 1s shown in Fig. 14, where
we compare QL(1/4)(T) (which indeed has a narrower shock, but is extremely
noisy) with [QL(I/A)&HL(IO)](T). These (QL&HT)(T) results are reasonably
smooth behind the shock and are essentially exact. Thus, we find the best
all-around results for the 100-zone test problem are given by the (QL&HL)(T)
shock-following method using Schulz's tensor formulatioms, Eq. (6.2), or by
using the (non-Q) PPM method with an adaptive shock-following mesh.

The results are summarized in Fig. 15, where we compare the various

QLS’ (QL&HL), and the PPM method.

11



REFERENCES

4

JMB

J. Von Neumann and R.D. Richtmyer, ''A Method for the Numerical

Calculation of Hydrodynamical Shocks,” J. Appl. Phys. 21, 232 (1950).

W.F. Noh, Artificial Viscosity (Q) and Artificial Heat Flux (H) Errors

for Spherically Divergent Shocks, Lawrence Livermore National Laboratory,

Livermore, CA, UCRL-89623 (1983).

P. Colella and P. Woodward, The Piecewise~Parabolic Method (PPM),

Lawrence Berkeley Laboratory, Berkelev, CA, LBL-14661 (1982).

W.D. Schulz, "Tensor Artificial Viscosity for Numerical Hydrodynamics,"

J. Math. Phys. 5, 133 (1964).

R.D. Richtmyer and K.W. Morton, '"Difference Methods for Initial-Value

Problems," Second Edition, Interscience Tracts in Pure and Applied

Mathematics (Interscience, NY, 1967).

W.F. Noh, Numerical Methods in Hydroaynamic Calculations, Lawrence

Livermore National Laboratory, Livermore, CA, UCRL-52112 (1976).

W.F. Noh, Artificial Viscosity Errors for Strong Shocks, Lawrence

Livermore National Laboratory, Livermore, (A, UCRL-53669 (1985).

12



FIGURE CAPTIONS

FIG.

FIG.

FIG. 3.

FIG.

FIG.

FIG.

FIG.

1.

2.

4.

5.

6.

QL = Zp(Au)z. Shaded area is '"Wall Heating Error.”

Typically it is over three mesh intervals,

The (Q&H) method, where QL(2/3,1/5) = 2/3p(Au)2 + 1/5 pCSIAUI and
HL(O,3/A) = 3/49CSAe. The heat flux term, H, reduces the Wall

Heating error to zero.

The unequal-zoned, infinite-shock test problem. Initial and
boundary conditions are the same as test problem #1 (see Fig. 8b).
Here, the mesh interval decreases for the first half of the mesh

(R < 1), then increases for the second half (R > 1).

Standard QL(2,0) = 2p(Au)2, and R = 1.25. The type #2 error

(Ap = p - 4) is positive for the first half, where the mesh interval
decreases (R < 1), and Ap > 0 for the second half (R > 1). The type
#1 Wall Heating error is present in the first few zones next to the

rigid wall on the left.

Standard QL(Z,O) = ZQ(AU)Z, and R = 1.25. Here the error is

very serious (=100%).

R = 1.05, and we compare the fixed-length Q; with the (Qg&H;)

method.

_ Au 2
(1) QE(6,O.8) 6o(Ax)
non-uniform mesh error.

(2) QE(6,0.8) & HE(O,6)

type #1 Wall Heating error and the non-uniform mesh type #2 error.

Au . ..
O'BDCS(Z?) this eliminates the

6DCS(%%), which eliminates both the

However, there is too much shock spreading over the finely zoned

regions using QE for this to be a practical way to minimize these

errors.

(3) Exact solution.

R = 1.05, and we compare QL (with reduced coefficient C0 = 1)
with the (Q &H ) method.

(1) QL(I,O) = p(au)?. The solution is noisy, but type #1
and #2 errors are reduced.
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FIG.

FIG.

FIG.

FIG.

8.

9.

10.

11.

(2) QL(l,O) = p(Au)2 & HL(O,2/3) = 2/3oCSAe. Using both Q. and
Hp (with small Q coefficients) eliminates the Wall Heating type #1
error altogether and reduces the nmon-uniform mesh type #2 error to

=3%. The (QL&HL) method is much smoother than Q. alone and may be a

practical compromise for mesh-interval changes that aren't too large.

The exact solutionm at t = 0.6 to Noh's Generic Comstant-Velocity

2 .. ..
Shock problems : (a) initial conditions; (b) plane geometry (§ = 1)
with a shock generated at a rigid wall: {(c) a shock generated at

2); and (d) a shock

the axis of symmetry for a cylinder (&

generated at the center of a sphere (3§ 3). All solutions have
constant post-shock states, and all have the same constant shock
speed, S = 1/3 (for initial conditions (a) and y = 5/3). The
essential difference is the preshocked density: o = 1 for

§ = 1; p‘ =4 for § = 2; p = 16 for § = 3; where

po(l + t/R)S—1 in front of the shock.

P

(1) Standard QL = ZQ(AU)Z.

2 .. .
(2) QL(V) = 2(Ar) p(%)4 (%%)2 ithe original von Neumann-Richtmyer
Q formulation, Eq. (2.6)]. Here, QL is superior to QL(V), but both

. . . . +
Qs are 1in serious error. The correct solution is p = 64.

This example shows the truly large errors (in density) using the
original Q (v) = 2(Ar)2(r/R)[‘L (Av/At)E for various mesh intervals
(Ar). The comparisons are t = 0.6 and sr = 0.01, 0.01, 0.005, and
0.00125, or K = 50, 100, 200, and 800. This shows that the
convergence of the density to the correct value p+ = 64 1s very

slow indeed, and even for K = 800, the error is unacceptable.

The solution for Noh's spherical test problem (Fig. 8d) is given at
two different times (t = 6 and t = 30) for the scale variable, £
t/R. As t increases, the preshock density profile is spread over a
physically greater and greater distance. Hence, the preshock value
Q_ = 16 should be progressivelv easier to resolve numerically as
time advances. The wiggly line is the numerical solution using the

2
standard Q; = 20(8u) . The numerical error is so large (20% < e <

ay » . +
600%) that it hardly resembles the exact solution, p = 64.
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FIG.

FIG.

FIG.

12.

13.

14.

15.

The (non-Q) PPM method of Woodward and Colella3 has very narrow
shocks (1 or 2 mesh intervals), and, for the standard test problem,
(K = 100) gives superior results. PPM using mesh refinement (i.e., a
shock-capturing adaptive mesh with K = 400) is equivalent to the
standard PPM using K = 1200. It is clear that using an adaptive mesh

is a very important procedure for accurately tracking shocks.

2 . .
The lower curve uses our standard QL(2,O) = 2p(Au)”, but is cast in
Schulz's tensor formulation, Eq. (6.2). The upper curve also uses

Schulz's tensor formulation, Eq. (6.2), along with his QL(S) =
pIA2U|3/2|AUI1/2 of Eq. (6.3). We see that the results are
essentially the same for either QL formulation. We conclude, then,
that it is the tensor use of Q that is important, rather than the
particular choice of QL. Consequently, we stay with the standard

2
QL = 2p(Au)” usage.

A comparison of Q_ (T) and the (QL&HL) (T) method [i.e., Eq. (6.2)]
using a very small Q, constant C2 = 1/4. Here, the QL(1/4) =
O.25p(Au)2 (T) formulation is very noisy, but produces a narrow
shock. The sharp shock remains in the [QL(I/A) & HL(IO)] (T) method
[where HL(10) = 10p1AutAe)], and we see that most of the post-shock
noise is damped, and the density and energy errors are nearly zero.
Thus, the (QL&HL) (T) method is a preferred shock-following

procedure.

We compare all of the methods for the standard K = 100 test problem
and for both the scalar (S) and tensor (T) formulations [Eqs. (6.1)
and (6.2)]. The (non-Q) PPM Method lies between the scalar Q. (s)
and (QL&HL) (S) results, but is not as accurate as the QL(T) and the
(QL&HL) (T) results. PPM with mesh refinement, curve (5), and the
(QL&HL) (T) method, curve (6), give essentially the converged

(exact) solution and are the preferred methods.
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